<<12345>>
6.

$\sin h^{-1}2+\cos h^{-1}2-\tan h^{-1} \frac{2}{3}+\cot h^{-1}(-2)=$


A) $\log \left(\frac{4+2\sqrt{3}+2\sqrt{5}+\sqrt{15}}{\sqrt{15}}\right)$

B) $\log \left(\frac{4+\sqrt{3}+\sqrt{5}+\sqrt{15}}{\sqrt{15}}\right)$

C) $\log \left(\frac{(2+\sqrt{3})+(2+\sqrt{5})\sqrt{5}}{\sqrt{3}}\right)$

D) $\log \frac{(2+\sqrt{3})+(2+\sqrt{5})\sqrt{3}}{\sqrt{5}}$



7.

If n is a positive integer greater than 1, then  $3(^nC_{0})-8(^nC_{1})+13(^nC_{2})-18(^nC_{3})+... $    $upto (n+1)$ terms =


A) -5

B) $\frac{2^{n+1}-1}{n}$

C) $\frac{2^{n}-1}{2}$

D) 0



8.

If $z=x+iy$ is a complex number satisfying  $|\frac{z-2i}{z+2i}|=2$ and the locus of z is a circle , then its radius is 


A) $\frac{5}{3}$

B) $\sqrt{\frac{71}{9}}$

C) $\frac{8}{3}$

D) $\frac{1}{3}$



9.

The rank of the matrix  $\begin{bmatrix}3 & 2&1&-4 \\2 & 3&0&-1\\1&-6&3&-8 \end{bmatrix}$ is 


A) 1

B) 2

C) 3

D) 4



10.

 If  $A=\begin{bmatrix}1 & 1 \\0 & 1 \end{bmatrix}$ and   $ I=\begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix}$  then for all  $n\in N$

 


A) $A^{n}=nA$

B) $A^{n}=nA+(n-1)A$

C) $A^{n}=(n-1)A-nl$

D) $A^{n}=nA-(n-1)l$



<<12345>>